Mathsarc Education

A learning place to fulfill your dream of success!

MATHEMATICS

Mathsarc Education

QUADRATIC EQUATION

SINGLE OPTION CORRECT

1.	If the expression $x^2 - (5m-2)x + (4m^2 + 10m + 25)$ can be expressed as a perfect square, then m =						
	(A) 8/3 or 4	(B) - 8/3 or 4	(C) 4/3 or 8	(D) - 4/3 or 8			
2.	The value of λ for which one root of the equation $x^2 + (1-2\lambda)x + (\lambda^2 - \lambda - 2) = 0$ is greater than 3 and						
	the other is less than 3 is given by						
	(A) $\lambda < 2$	(B) $2 < \lambda < 5$	(C) $\lambda > 5$	(D) $\lambda > 1$			
3.	The value of m for th	ne roots of $2x^2 - mx - 8 =$	= 0 differ by (m – 1) is				
	(A) 4, - 10/3	(B) - 6, 10/3	(C) 6, 10/3	(D) 6, - 10/3			
4.	If α and β ($\alpha < \beta$) are	e the roots of the equation	$bn x^2 + bx + c = 0$, where c	<0 < b then			
	(A) $0 \le \alpha \le \beta$	(B) $\alpha < 0 < \beta$	(C) $\alpha < \beta < 0$	(D) Cant Say			
5.	If the equation $k(6x^2)$ common, then the va	, , , ,	and $6k(2x^2+1) + px + (4x^2)$	(-2)=0 have both roots			
	(A) 1/2	(B) 2	(C) 1	(D) 4			
6.	If $y = 2 + \frac{1}{4 + \frac{1}{4 + \frac{1}{4 + \dots \infty}}}$						
	(A) $y = 6$	(B) y = 5	(C) $y = \sqrt{6}$	(D) $y = \sqrt{5}$			
7.	The value of $\sqrt{8+2\sqrt{8}}$	$\overline{8+2\sqrt{8+2\sqrt{8+\infty}}}$ is					
	(A) 10	(B) 6	(C) 8	(D) 4			
8.	If α and β are roots of $4x^2 - 16x + \lambda = 0$ such that $\alpha \in (1, 2)$, $\beta \in (2, 3)$, the sum of all the integral values of λ is						
	(A) 42	(B) 32	(C) 22	(D) 12			
9.	If $f(x) = (x - a_1)^2 + (x - a_1)^2$	$(-a_2)^2 + (x - a_3)^2 + \dots +$	$(x - a_n)^2$. Find x where $f(x)$) is minimum			
	(A) -∞		(B) $\frac{a_1 + a_2 + a_3 + \dots + a_n}{n}$	a _n			
	(C) - $\frac{a_1 + a_2 + a_3 + \dots}{n}$	$ + a_{n}$	(D) none of these				
10.	0. If the larger root of equation $x^2 + (2 - a^2)x + (1 - a^2) = 0$ is less than both the roots of the equation						
	$x^{2} - (a^{2} + 4a + 1)x + a^{2} + 4a = 0$, then the range of a, is						
	(A) $\left(-\sqrt{2},\sqrt{2}\right)$	(B) $\left(-\frac{1}{4},\sqrt{2}\right)$	(C) $\left(-\sqrt{2},\frac{1}{4}\right)$	(D) none of these			

11. If one solution of the equation $x^3 - 2x^2 + ax + 10 = 0$ is the additive inverse of another, then which one of the following inequalities is true?

(A)
$$-40 \le a \le -30$$
 (B) $-30 \le a \le -20$ (C) $-20 \le a \le -10$ (D) $-10 \le a \le 0$

12. The value of $f(x) = x^2 + (p - q)x + p^2 + pq + q^2$ for real values of p, q and x

- (A) is always negative (B) is always positive
- (C) is some time zero for non zero value of x (D) None of these

13. Solution set for the inequation
$$\frac{x^2 - 1}{x} \le 2 - x$$
 is
(A) $x \in \left(-\infty, \frac{1 - \sqrt{3}}{2}\right] \cup \left(0, \frac{1 + \sqrt{3}}{2}\right]$ (B) $x \in \left[\frac{1 - \sqrt{3}}{2}, 0\right] \cup \left[\frac{1 + \sqrt{3}}{2}, \infty\right)$
(C) $x \in \left[\frac{1 - \sqrt{3}}{2}, \frac{1 + \sqrt{3}}{2}\right]$ (D) None of these

14. The number of distinct real roots of equation $(|\mathbf{x}|-1)^{|\mathbf{x}-1|-3} = 1$ (A) 3 (B) 4 (C) 5

(D) None of these

 $y = ax^2 + bx + c$

V(h, k)

x - axis

15. Consider the figure of real quadratic $y = Q(x) = ax^2 + bx + c$ as shown. Select the **wrong** option (Where $D = b^2 - 4ac$, $i = \sqrt{-1}$) \bigvee y - axis

- (A) One root of the equation $ax^2 + bx + c = 0$ is $x = \frac{-b + i\sqrt{-D}}{2a}$.
- (B) $ax^2 + bx + c > 0 \forall x \in R, a \neq 0$
- (C) |a| + |b| + c = 0 for at least one real triplet (a, b, c).
- (D) $h = -\frac{b}{2a} \& k = -\frac{D}{4a}$
- 16. Solution set of $\frac{|x-1|}{x(x-2)|x-3|} \ge 0$ is
 - (A) $x \in (-\infty, 0) \cup (2, \infty)$ (B) $x \in (-\infty, 0) \cup (2, \infty) \cup \{1\} \{3\}$ (C) $x \in (0, 2)$ (D) none of these
- 17. a cubic polynomial P(x) when divided by (x 1), (x 2) and (x 3) leaves remainder 3, 8 and 15 respectively. If P(4) = 30 then the remainder, when P(x) is divided by (x + 1) is

18. If
$$(1+x)(1+x^2)(1+x^4)(1+x^8)....(1+x^{128}) = \sum_{r=0}^n x^r$$
 then n is equal to

(A) 255 (B) 127 (C) 63 (D) None of these

13. The equation $2^{2x} + (a-1) \cdot 2^{x+1} + a = 0$ has roots of opposite sign then exhaustive set of values of 'a' is

(A) a < 0 (B) $a \in (-1, 0)$ (C) $a \in (-\infty, 1/3)$ (D) $x \in (0, 1/3)$

14. Let α and β are the roots of the equation $px^2 + qx + r = 0$, $p \neq 0$. If p, q, r are in A.P. and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then the value of $|\alpha - \beta|$ is

Mathsa	MATHSARC EDUCAT a learning place to fulfill you			IIT JEE MAINS / ADVANCED					
	(A) $\frac{\sqrt{34}}{9}$	(B) $\frac{2\sqrt{13}}{9}$	(C) $\frac{\sqrt{61}}{9}$	(D) $\frac{2\sqrt{17}}{9}$					
15.	5. Solution of the equation: $\sqrt{x+3}-4\sqrt{x-1} + \sqrt{x+8}-6\sqrt{x-1} = 1$ is								
	(A) $x \in [4, 9]$	(B) $x \in [3, 8]$		(D) $x \in [4, 7]$					
16.	If the range of $f(x) = $	$\frac{2x^4 - 14x^2 - 8x + 49}{x^4 - 7x^2 - 4x + 23}$ is (a, b], then (a + b) is						
	(A) 3	(B) 4	(C) 5	(D) 6					
17.	Consider the equation $x^2 + \alpha x + \beta = 0$ having roots α , β such that $\alpha \neq \beta$. Also consider the inequality $ y-\beta -\alpha < \alpha$, then								
	(A) in-equality is sati	sfied by exactly two int	egral values of y						
	(B) in-equality is sati	isfied by all values of y	∈ (- 4, 2)						
	(C) Roots of the equa	ation are of same sign							
	(D) $x^2 + \alpha x + \beta > 0 \forall x$	$x \in [-1, 0]$							
18.	If $Q(a) = a^2 + a + 1$, the	en number of solutions	of equation $Q(a^2) = 3 Q(a)$	is					
	(A) 0	(B) 1	(C) 2	(D) more than 2					
19.), where p, $q \in R$ has all po	ositive roots, then					
	(A) $q: p = 3:2$	(B) $p > 8$	(C) $q \ge 4$	(D) $p < 0 < q < 8$					
20.	Let α , β are the roots of the quadratic equation $ax^2 + bx + c = 0$. If a , b , c are in A.P. and $\alpha + \beta = 15$, then $\alpha\beta$ equals								
	(A) - 21	(B) - 29	(C) - 31	(D) - 39					
21.	Let α and β are the ro	bots of $x^2 - \sqrt{2}x + 1 = 0$, t	hen the value of $\alpha^{50} + \beta^{50}$ is	IS -					
	(A) 0	(B) √2	(C) 2	(D) 1					
22.	If the equation $\frac{1}{x} + \frac{1}{x}$	$\frac{1}{x-1} + \frac{1}{x-2} = 3x^3$ has k real	al roots, then k is equal to \cdot						
	(A) 2	(B) 3	(C) 4	(D) 6					
23.	Let $f(x) = x^3 + x^2 + 1$; § $g(x_1) \cdot g(x_2) \cdot g(x_3) + 1$		of $f(x)$ are x_1 , x_2 and x_3 the	n the value of					
	(A) 3	(B) 7	(C) 17	(D) 20					
24.	Let $r(x)$ be the remain	der when the polynom	ial $x^{135} + x^{125} - x^{115} + x^5 + 1$	is divided by x ³ – x. Then					
	(A) $r(x)$ is the zero point of the sero point	olynomial	(B) $r(x)$ is a nonzero cor	istant					
	(C) degree of r(x) is a (KVPY - 17)	one	(D)	degree of $r(x)$ is two					
25.		6	netric mean and harmonic Illest of the two roots of the						
	$A(G-H)x^2+G(H-H)$	A)x + H(A - G) = 0, the	en						
	(A) $-2 < \alpha < -1$	(B) $0 \le \alpha \le 1$	(C) $-1 < \alpha < 0$	(D) 1 < a < 2					
26.	The sum of all non-in	teger roots of the equat	ion $x^5 - 6x^4 + 11x^3 - 5x^2 - 3$	x + 2 = 0 is					
	(A) 6	(B) - 11	(C) - 5	(D) 3					

Private Circular: 2nd floor rahi complex Undri chowk Pune MH 411060, Contact : info@mathsarc.com

MATHSARC EDUCATION A learning place to fulfill your dreams of success!

IIT JEE MAINS / ADVANCED

27. Let f(x) be a quadratic polynomial with f(2) = 10 and f(-2) = -2. Then the coefficient of x in f(x) is :
(A) 1 (B) 2 (C) 3 (D) 4
28. Suppose a, b, c are three distinct real numbers. Let P(x) =
$$\frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-c)(x-a)}{(b-c)(b-a)} + \frac{(x-a)(x-b)}{(c-a)(c-b)}$$

when simplified, P(x) becomes
(A) 1 (B) x
(C) $\frac{x^2 + (a+b+c)(ab+bc+ca)}{(a-b)(b-c)(c-a)}$ (D) 0
29. Let a, b, c, d be real numbers such that $|a-b| = 2$, $|b-c| = 3$, $|c-d| = 4$. Then the sum of all possible values of $|a-d|$ is
(A) 9 (B) 18 (C) 24 (D) 30
30. If $x + \frac{1}{x} = a, x^2 + \frac{1}{x^2} = b$, then $x^3 + \frac{1}{x^2}$ is
(A) $a^3 + a^2 - 3a - 2 - b$ (B) $a^3 - a^2 - 3a + 4 - b$ (C) $a^3 - a^2 + 3a - 6 - b$ (D) $a^3 + a^2 + 3a - 16 - b$
31. In the real number system, the equation $\sqrt{x+3-4\sqrt{x-1}} + \sqrt{x+8-6\sqrt{x-1}} = 1$ has -
(A) No solution (B) Exactly two distinct solutions
(C) Exactly four distinct solutions (D) Infinitely may solutions
32. Let a, b, c, d be numbers in the set $\{1, 2, 3, 4, 5, 6\}$ such that the curve $y = 2x^3 + ax + b$ and $y = 2x^3 + cx + d$ have no point in common. The maximum possible value of $(a-c)^2 + b - d$ is -
(A) 0 (B) 5 (C) 30 (D) 36
33. Let f: $R \to R$ be the function $f(x) = (x-a_1)(x-a_2) + (x-a_2)(x-a_3) + (x-a_3)(x-a_4)$ with $a_1, a_2, a_3 \in R$. Then $f(x) > 0$ if and only if -
(A) At least two of a_1, a_2, a_3 are cqual (B) $a_1 = a_2 = a_3$
(C) a_1, a_2, a_3 are all distinct (D) a_2, a_2, a_3 are all positive and distinct
34. A student notices that the roots of the equation $x^2 + bx + a = 0$ are each 1 less than the roots of the equation $x^4 + 2x + 6 = 0$. The value of $(r+2)(r+3)(r+4)(r+5)$ is equal to -
(A) $A - 4$ (B) -2 (C) -4 (D) -5
35. Let $r be a root of the equation $x^2 + 2x + 6 = 0$. The value of $(r+2)(r+3)(r+4)(r+5)$ is equal to -
(A) 51 (B) -51 (C) -126 (D) 126
36. If $p(x) = x^2 - 3x + 3a = 4 = 0$. The a $a^2 + 3x + 5b = 0$. The value of $(r+2)(r+3)(r+4)(r+5)$ is equal to -
(A) $A + (B) 5$ (C) 6 (D) 7
37. Two distinct polynomials$

Private Circular: 2nd floor rahi complex Undri chowk Pune MH 411060, Contact : info@mathsarc.com

Mathe	MATHSARC EDUCA <i>a learning place to fulfill ye</i>			IIT JEE MAINS/ADVANCED				
39.	The number of ordered pairs (x, y) of real numbers that satisfy the simultaneous equations							
	$x + y^2 = x^2 + y = 12$ is							
	(A) 0	(B) 1	(C) 2	(D) 4				
40.			x - 3 = 0. If a is of the form	$\frac{k(k+1)}{2}, k \in Q$, then roots of				
	equation are necessar	2						
	(A) integers	(B) imaginary		(D) can not be predicted				
41.	Set of all real values	of 'a' such that $f(x) = \frac{2}{2}$	$\frac{2a-1)x^{2}+2(a+1)x+(2a-1)x}{x^{2}-2x+40}$	$\frac{1}{2}$ is always negative is				
	(A) $(-\infty, 0)$	(B) $(0, \infty)$	(C) (-∞, 1/2)	(D) None of these				
42.	Set of all values of x s	satisfying the inequality	$\sqrt{x^2 - 7x + 6} > x + 2$ is -					
	(A) $\mathbf{x} \in \left(-\infty, \frac{2}{11}\right)$	(B) $\mathbf{x} \in \left(\frac{2}{11}, \infty\right)$	(C) $x \in (-\infty, 1] \cup [6, \infty)$	(D) $x \in [6,\infty)$				
43.	Suppose that the roo a + b, b + c and c + a.		0 are a, b and c, and the ro	bots of $x^3 + rx^2 + sx + t = 0$ are				
	(A) 23	(B) 24	(C) 25	(D) 26				
MUL	TIPLE OPTIONS COF	RRECT						
1.	The integer value of	k for which $(k-2)x^2 + 8$	$3x+k+4 > 0 \forall x \in \mathbb{R}$ is					
	(A) 5	(B) 6	(C) 7	(D) 4				
2.	Find the value of k for which the graph of the quadratic polynomial							
	$P(x) = x^2 + (2x + 3)k$	+4(x+2)+3k-5 inters	ects the axis of x at two dis	stinct points.				
	(A) 1	(B) 2	(C) 5	(D) 4				
3.	Select the correct stat	ement(s) for solution se	t of x					
	(A) $ 2x-1 > -1 \to x$	∈R	(B) $\frac{1}{x-1} < x \rightarrow x(x-1)$	$)>1 \forall x>1$				
	(C) $\frac{ x -1}{x(x-2)} < 0 \equiv \frac{1}{2}$	$\frac{x+1)(x-1)}{x(x-2)} < 0$	(D) $ x-1 (x-2)^2 \le 0 \to 0$	$x \in \phi$				
4.	Select the correct stat	ement(s) for real numbe	ers a, b, c and d.					
	(A) If $ab = 0$ and $a =$	0 then $b \in R$	(B) if $ab = ac$ then $ac = b = bc$	$a \not a c \to b = c \forall a \in R$				
	(C) $\frac{a^2b}{c} \ge 0 \rightarrow \frac{b}{c} \ge 0 \& a \in \mathbb{R}$ (D) $\frac{a}{b} \ge \frac{c}{d} \rightarrow ad \ge bc \forall b, d \in \mathbb{R}^+$							
5.	If $ax^2 + bx + c = 0$ and	$d cx^2 + b x + a = 0$ (a, b, c	$x \in R$) have a common non	- real roots then				
	(A) $-2 a < b < 2 a $ (B) $-2 c < b < 2 c $							
	(C) $a = \pm c$		(D) a = c					
6.	Consider the equatio	$n x^2 + x - a = 0, a \in N.$	f equation has real roots th	len				
	(A) a = 2	(B) $a = 6$	(C) a = 12	(D) a = 20				

MATHSARC EDUCATION *a learning place to fulfill your dreams of success!*

INTEGER TYPE

- 1. The number of irrational solutions of the equation $\sqrt{x^2 + \sqrt{x^2 + 11}} + \sqrt{x^2 \sqrt{x^2 + 11}} = 4$ is ______
- 2. Number of real values of x satisfying the equation $\sqrt{x^2 6x + 9} + \sqrt{x^2 6x + 6} = 1$ is _____
- 3. Find the number of integral values of a for which the system of equations

$$\begin{array}{c} x + ay = 3 \\ ax + 4y = 6 \end{array}$$
 satisfy x > 1; y > 0.

- 4. Minimum value of f(x) = |x 1| + |2x 1| + |3x 1| + |4x 1| is p/q where p/q is in lowest form and $p, q \in I^+$ then p + q is _____
- 5. When the polynomial $5x^3 + Mx + N$ is divided by $x^2 + x + 1$, the remainder is 0. Then the value of |M + N| is _____
- 6. If a 2b = 1 then value of $a^3 6ab 8b^3$ is equal to _____
- 7. The value of $\sqrt{1+5\sqrt{1+....+2013\sqrt{1+2014\sqrt{1+2015\sqrt{1+2016}\times 2018}}}}$ is _____
- 8. Let r, s, t are roots of equation $8x^3 + 1001x + 2008 = 0$. Then value of $(r+s)^3 + (s+t)^3 + (t+r)^3$ is 7k3 (where k is at ten's place). Then value of k is _____
- 9. If both roots of equation $4x^2 20px + 25p^2 + 15p 66 = 0$ are greater than 2, then sum of all possible integral values of p is _____
- 10. Let k be an integer and p is a prime number such that the quadratic equation $x^2 + kx + p = 0$ has two distinct positive integer solutions. Then the value of -(p+k) is.
- 11. If the first three consecutive terms of a GP are the real roots of the equation $2x^3 19x^2 + 57x 54 = 0$ and k is the sum of infinite number of the terms of this G.P. Then 2k/9 equals
- 12. Let $(x + 3)^2 (x + 4)^3 (x + 5)^4 = (x + 1)^9 + a_1 (x + 1)^8 + a_2 (x + 1)^7 + \dots + a_9$ then $a_2 365$ is equal to _____

SUBJECTIVE PROBLEMS

- 1. Obtain a polynomial of lowest degree with integral coefficients, whose one of the zero is $\sqrt{5} + \sqrt{2}$.
- 2. Let P(x) be a polynomial such that $x \cdot P(x-1) = (x-4) \cdot P(x) \forall x \in \mathbb{R}$. Find all such polynomials
- 3. Let P(x) be a monic cubic equation such that P(1) = 1, P(2) = 2, P(3) = 3 then find P(4).
- 4. Show that $f(x) = x^{1000} x^{500} + x^{100} + x + 1$ has no rational roots.

MATRIX MATCH

1. Match the following

	COULUMN – I		COULUMN - II
А	If a, b, c and d are four non-zero real number such that $(d+a-b)^2 + (d+b-c)^2 = 0$ and the roots of the equation $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ are real and equal then	Р	a+b+c=0
В	If the roots of the equation $(a^2 + b^2)x^2 - 2b(a + c) + (b^2 + c^2) = 0$ are real and equal, then	Q	a,b,c are in A.P.

С	If the equation $ax^2 + bx + c = 0$ and $x^3 - 3x^2 + 3x - 1 = 0$ have a common real root, then	R	a,b,c, are in G.P.
D	Let a,b,c be positive real numbers such that the expression $bx^2 + (\sqrt{(a+c)^2 + 4b^2})x + (a+c)$ is non- negative $\forall x \in \mathbb{R}$, then	S	a,b,c are in H.P.

COMPREHENSION for Q1-3

The first four terms of a sequence are given by $T_1 = 0$, $T_2 = 1$, $T_3 = 1$, $T_4 = 2$. The general term is given by

- $T_n = A \alpha^{n-1} + B \beta^{n-1}$ where A, B, α , β are independent of n and A is positive.
- 1. The value of $(\alpha^2 + \beta^2 + \alpha\beta)$ is equal to

	(A) 1	(B) 2	(C) 5	(D) 4
2.	The value of $5(A^2 + B^2)$ is	s equal to		

- (A) 2 (B) 4 (C) 6 (D) 8
- 3. The quadratic equation whose roots are α and β is given by

(A) $x^2 - 2x - 1 = 0$ (B) $x^2 - 2x - 2 = 0$ (C) $x^2 - x - 1 = 0$ (D) None

THANKS

Visit: www.mathsarc.com

Mathsarc Educat	MATHSARC EDUCATI <i>A learning place to fulfill your</i>		ов лисселл!				T JEE MAINS/ADVANG	
ANSWER KEY & SOLUTION								
SINGLE OPTION CORRECT								
1.	D	2.	В	3.	D	4.	В	
5.	В	6.	D	7.	D	8.	А	
9.	В	10.		11.		12.		
13.	А	14.	В	15.	С	16.	В	
17.	A, Hint: $P(x) = (x - $	1)(x ·	$(x - 3) + x^2 + 2x$					
18.	А	13.	С	14.	В	15.	С	
16.	C Hint: $f(x) = 2 + -$	$(x^2 -$	$\frac{3}{4)^2 + (x-2)^2 + 3}$					
17.		18.						
19.	C, Hint: AM of root	s = H	$IM \rightarrow \alpha = \beta = \gamma = \delta =$	2. P :	= - 8 and q = 24			
20.		21.		22.		23.	А	
24.	С	25.	В	26.	D, Hint: (x – 1) (x – 2) (x³ − 3	3x + 1) = 0	
27.	С	28.	А	29.		30.		
31.	D	32.	В	33.	В	34.	С	
35.	С	36.	D	37.	С	38.	С	
39.	D	40.	С	41.	А	42.	А	
43.	А							
MULTI O	PTIONS CORRECT							
1.		2.		3.	А, В, С	4.	A, C, D	
5.	A, B, D	6.	A, B, C, D					
INTEGER	R TYPE							
1.		2.		3.		4.	7	
5.	5	6.	1	7.	6	8.	5	
9.	7	10.	1	11.	3			
12.	371							
Hir	$\text{nt: } x + 1 = y \rightarrow (y + 2)^2$	² (y +	$(3)^3 (y + 4)^4 = y^9 + a_1 y^9$	y ⁸ + a	$a_2 y^7 + \dots + a_9$			
a2 =	sum of roots taking	two a	at a time.					
SUBJECT	IVE							
1.	1. $P(x) = a(x^4 - 14x^2 + 9)$, where $a \in I$, $a \neq 0$.							
2.	2. $P(x) = c x(x - 1)(x - 2)(x - 3), c \neq 0$							
3.	10							
MATRIX	MATRIX MATCH							

ICED

1. $A \rightarrow R, B \rightarrow R, C \rightarrow P, D \rightarrow Q$

COMPREHENSION for Q 1 - 3

1. B 2. A 3. C