SINGLE OPTION CORRECT

1. If the expression $x^{2}-(5 m-2) x+\left(4 m^{2}+10 m+25\right)$ can be expressed as a perfect square, then $m=$
(A) $8 / 3$ or 4
(B) $-8 / 3$ or 4
(C) $4 / 3$ or 8
(D) $-4 / 3$ or 8
2. The value of λ for which one root of the equation $x^{2}+(1-2 \lambda) x+\left(\lambda^{2}-\lambda-2\right)=0$ is greater than 3 and the other is less than 3 is given by
(A) $\lambda<2$
(B) $2<\lambda<5$
(C) $\lambda>5$
(D) $\lambda>1$
3. The value of m for the roots of $2 x^{2}-m x-8=0$ differ by $(m-1)$ is
(A) $4,-10 / 3$
(B) $-6,10 / 3$
(C) $6,10 / 3$
(D) $6,-10 / 3$
4. If α and $\beta(\alpha<\beta)$ are the roots of the equation $x^{2}+b x+c=0$, where $c<0<b$ then
(A) $0<\alpha<\beta$
(B) $a<0<\beta$
(C) $\alpha<\beta<0$
(D) Cant Say
5. If the equation $k\left(6 x^{2}+3\right)+r x+\left(2 x^{2}-1\right)=0$ and $6 \mathrm{k}\left(2 x^{2}+1\right)+p x+\left(4 x^{2}-2\right)=0$ have both roots common, then the value p / r is
(A) $1 / 2$
(B) 2
(C) 1
(D) 4
6. If $y=2+\frac{1}{4+\frac{1}{4+\frac{1}{4+\ldots \ldots \infty}}}$
(A) $y=6$
(B) $y=5$
(C) $y=\sqrt{ } 6$
(D) $y=\sqrt{ } 5$
7. The value of $\sqrt{8+2 \sqrt{8+2 \sqrt{8+2 \sqrt{8+\ldots . \infty}}}}$ is
(A) 10
(B) 6
(C) 8
(D) 4
8. If a and β are roots of $4 x^{2}-16 x+\lambda=0$ such that $a \in(1,2), \beta \in(2,3)$, the sum of all the integral values of λ is
(A) 42
(B) 32
(C) 22
(D) 12
9. If $f(x)=\left(x-a_{1}\right)^{2}+\left(x-a_{2}\right)^{2}+\left(x-a_{3}\right)^{2}+$ \qquad $+\left(x-a_{n}\right)^{2}$. Find x where $f(x)$ is minimum
(A) $-\infty$
(B) $\frac{a_{1}+a_{2}+a_{3}+\ldots \ldots+a_{n}}{n}$
(C) $-\frac{a_{1}+a_{2}+a_{3}+\ldots \ldots+a_{n}}{n}$
(D) none of these
10. If the larger root of equation $x^{2}+\left(2-a^{2}\right) x+\left(1-a^{2}\right)=0$ is less than both the roots of the equation $x^{2}-\left(a^{2}+4 a+1\right) x+a^{2}+4 a=0$, then the range of a, is
(A) $(-\sqrt{2}, \sqrt{2})$
(B) $\left(-\frac{1}{4}, \sqrt{2}\right)$
(C) $\left(-\sqrt{2}, \frac{1}{4}\right)$
(D) none of these
11. If one solution of the equation $x^{3}-2 x^{2}+a x+10=0$ is the additive inverse of another, then which one of the following inequalities is true?
(A) $-40<a<-30$
(B) $-30<a<-20$
(C) $-20<a<-10$
(D) $-10<a<0$
12. The value of $f(x)=x^{2}+(p-q) x+p^{2}+p q+q^{2}$ for real values of p, q and x
(A) is always negative
(B) is always positive
(C) is some time zero for non zero value of x
(D) None of these
13. Solution set for the inequation $\frac{x^{2}-1}{x} \leq 2-x$ is
(A) $\mathrm{x} \in\left(-\infty, \frac{1-\sqrt{3}}{2}\right] \cup\left(0, \frac{1+\sqrt{3}}{2}\right]$
(B) $x \in\left[\frac{1-\sqrt{3}}{2}, 0\right) \cup\left[\frac{1+\sqrt{3}}{2}, \infty\right)$
(C) $x \in\left[\frac{1-\sqrt{3}}{2}, \frac{1+\sqrt{3}}{2}\right]$
(D) None of these
14. The number of distinct real roots of equation $(|x|-1)^{|x-1|-3}=1$
(A) 3
(B) 4
(C) 5
(D) None of these
15. Consider the figure of real quadratic $y=Q(x)=a x^{2}+b x+c$ as shown. Select the wrong option (Where $D=b^{2}-4 a c, i=\sqrt{-1}$)
(A) One root of the equation $a x^{2}+b x+c=0$ is $x=\frac{-b+i \sqrt{-D}}{2 a}$.
(B) $a x^{2}+b x+c>0 \forall x \in R, a \neq 0$
(C) $|\mathrm{a}|+|\mathrm{b}|+\mathrm{c}=0$ for at least one real triplet $(\mathrm{a}, \mathrm{b}, \mathrm{c})$.
(D) $\mathrm{h}=-\frac{\mathrm{b}}{2 \mathrm{a}} \& \mathrm{k}=-\frac{\mathrm{D}}{4 \mathrm{a}}$

16. Solution set of $\frac{|x-1|}{x(x-2)|x-3|} \geq 0$ is
(A) $x \in(-\infty, 0) \cup(2, \infty)$
(B) $x \in(-\infty, 0) \cup(2, \infty) \cup\{1\}-\{3\}$
(C) $x \in(0,2)$
(D) none of these
17. a cubic polynomial $P(x)$ when divided by $(x-1),(x-2)$ and $(x-3)$ leaves remainder 3,8 and 15 respectively. If $P(4)=30$ then the remainder, when $P(x)$ is divided by $(x+1)$ is
(A) -25
(B) -20
(C) -16
(D) none of these
18. If $(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right) \ldots . . .\left(1+x^{128}\right)=\sum_{r=0}^{n} x^{r}$ then n is equal to
(A) 255
(B) 127
(C) 63
(D) None of these
19. The equation $2^{2 x}+(a-1) \cdot 2^{x+1}+a=0$ has roots of opposite sign then exhaustive set of values of ' a ' is
(A) a <0
(B) $a \in(-1,0)$
(C) $a \in(-\infty, 1 / 3)$
(D) $x \in(0,1 / 3)$
20. Let α and β are the roots of the equation $p x^{2}+q x+r=0, p \neq 0$. If p, q, r are in A.P. and $\frac{1}{\alpha}+\frac{1}{\beta}=4$, then the value of $|\alpha-\beta|$ is
(A) $\frac{\sqrt{34}}{9}$
(B) $\frac{2 \sqrt{13}}{9}$
(C) $\frac{\sqrt{61}}{9}$
(D) $\frac{2 \sqrt{17}}{9}$
21. Solution of the equation: $\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1$ is
(A) $x \in[4,9]$
(B) $x \in[3,8]$
(C) $x \in[5,10]$
(D) $x \in[4,7]$
22. If the range of $f(x)=\frac{2 x^{4}-14 x^{2}-8 x+49}{x^{4}-7 x^{2}-4 x+23}$ is $(a, b]$, then $(a+b)$ is
(A) 3
(B) 4
(C) 5
(D) 6
23. Consider the equation $x^{2}+\alpha x+\beta=0$ having roots a, β such that $\alpha \neq \beta$. Also consider the inequality $||y-\beta|-\alpha|<\alpha$, then
(A) in-equality is satisfied by exactly two integral values of y
(B) in-equality is satisfied by all values of $y \in(-4,2)$
(C) Roots of the equation are of same sign
(D) $x^{2}+\alpha x+\beta>0 \forall x \in[-1,0]$
24. If $Q(a)=a^{2}+a+1$, then number of solutions of equation $Q\left(a^{2}\right)=3 Q(a)$ is
(A) 0
(B) 1
(C) 2
(D) more than 2
25. If the equation in $x, x^{4}+p x^{3}+q x^{2}=16(2 x-1)$, where $p, q \in R$ has all positive roots, then
(A) $\mathrm{q}:|\mathrm{p}|=3: 2$
(B) $p>8$
(C) $q \geq 4$
(D) $\mathrm{p}<0<$ q <8
26. Let a, β are the roots of the quadratic equation $a x^{2}+b x+c=0$. If a, b, c are in A.P. and $\alpha+\beta=15$, then $\alpha \beta$ equals
(A) -21
(B) -29
(C) -31
(D) -39
27. Let α and β are the roots of $x^{2}-\sqrt{ } 2 x+1=0$, then the value of $\alpha^{50}+\beta^{50}$ is -
(A) 0
(B) $\sqrt{ } 2$
(C) 2
(D) 1
28. If the equation $\frac{1}{x}+\frac{1}{x-1}+\frac{1}{x-2}=3 x^{3}$ has k real roots, then k is equal to -
(A) 2
(B) 3
(C) 4
(D) 6
29. Let $f(x)=x^{3}+x^{2}+1 ; g(x)=x^{2}-1$. If the roots of $f(x)$ are x_{1}, x_{2} and x_{3} then the value of $g\left(x_{1}\right) \cdot g\left(x_{2}\right) \cdot g\left(x_{3}\right)+17 g\left(x_{1} x_{2} x_{3}\right)$ is -
(A) 3
(B) 7
(C) 17
(D) 20
30. Let $r(x)$ be the remainder when the polynomial $x^{135}+x^{125}-x^{115}+x^{5}+1$ is divided by $x^{3}-x$. Then
(A) $r(x)$ is the zero polynomial
(B) $r(x)$ is a nonzero constant
(C) degree of $r(x)$ is one
(D) degree of $r(x)$ is two
(KVPY - 17)
31. Let A, G and H be the arithmetic mean, geometric mean and harmonic mean, respectively of two distinct positive real numbers. If α is the smallest of the two roots of the equation
$A(G-H) x^{2}+G(H-A) x+H(A-G)=0$, then
(A) $-2<\alpha<-1$
(B) $0<a<1$
(C) $-1<\alpha<0$
(D) $1<a<2$
32. The sum of all non-integer roots of the equation $x^{5}-6 x^{4}+11 x^{3}-5 x^{2}-3 x+2=0$ is
(A) 6
(B) -11
(C) -5
(D) 3
33. Let $f(x)$ be a quadratic polynomial with $f(2)=10$ and $f(-2)=-2$. Then the coefficient of x in $f(x)$ is :
(A) 1
(B) 2
(C) 3
(D) 4
34. Suppose a, b, c are three distinct real numbers. Let $P(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}+\frac{(x-a)(x-b)}{(c-a)(c-b)}$ when simplified, $\mathrm{P}(\mathrm{x})$ becomes
(A) 1
(B) x
(C) $\frac{x^{2}+(a+b+c)(a b+b c+c a)}{(a-b)(b-c)(c-a)}$
(D) 0
35. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be real numbers such that $|\mathrm{a}-\mathrm{b}|=2,|\mathrm{~b}-\mathrm{c}|=3,|\mathrm{c}-\mathrm{d}|=4$. Then the sum of all possible values of $|a-d|$ is
(A) 9
(B) 18
(C) 24
(D) 30
36. If $x+\frac{1}{x}=a, x^{2}+\frac{1}{x^{3}}=b$, then $x^{3}+\frac{1}{x^{2}}$ is
(A) $a^{3}+a^{2}-3 a-2-b$
(B) $a^{3}-a^{2}-3 a+4-b$
(C) $a^{3}-a^{2}+3 a-6-b$
(D) $a^{3}+a^{2}+3 a-16-b$
37. In the real number system, the equation $\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1$ has -
(A) No solution
(B) Exactly two distinct solutions
(C) Exactly four distinct solutions
(D) Infinitely may solutions
38. Let a, b, c, d be numbers in the set $\{1,2,3,4,5,6\}$ such that the curves $y=2 x^{3}+a x+b$ and $y=2 x^{3}+c x$ $+d$ have no point in common. The maximum possible value of $(a-c)^{2}+b-d$ is -
(A) 0
(B) 5
(C) 30
(D) 36
39. Let $f: R \rightarrow R$ be the function $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right)+\left(x-a_{2}\right)\left(x-a_{3}\right)+\left(x-a_{3}\right)\left(x-a_{1}\right)$ with $a_{1}, a_{2}, a_{3} \in R$. Then $f(x)>0$ if and only if -
(A) At least two of $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$ are equal
(B) $\mathrm{a}_{1}=\mathrm{a}_{2}=\mathrm{a}_{3}$
(C) a_{1}, a_{2}, a_{3} are all distinct
(D) a_{1}, a_{2}, a_{3} are all positive and distinct
40. A student notices that the roots of the equation $x^{2}+b x+a=0$ are each 1 less than the roots of the equation $x^{2}+a x+b=0$. Then $a+b$ is:
(A) -4
(B) -2
(C) -4
(D) -5
41. Let r be a root of the equation $x^{2}+2 x+6=0$. The value of $(r+2)(r+3)(r+4)(r+5)$ is equal to -
(A) 51
(B) -51
(C) -126
(D) 126
42. Let $p(x)=x^{2}-5 x+a$ and $q(x)=x^{2}-3 x+b$, where a and b are positive integers. Suppose $h c f(p(x)$, $q(x))=x-1$ and $k(x)=\operatorname{lcm}(p(x), q(x))$. If the coefficient of the highest degree term of $k(x)$ is 1 , the sum of the roots of $(x-1)+k(x)$ is -
(A) 4
(B) 5
(C) 6
(D) 7
43. Two distinct polynomials $f(x)$ and $g(x)$ are defined as follows: $f(x)=x^{2}+a x+2 ; g(x)=x^{2}+2 x+a$. If the equations $f(x)=0$ and $g(x)=0$ have a common root then the sum of roots of the equation
$f(x)+g(x)=0$ is -
(A) $-1 / 2$
(B) 0
(C) $1 / 2$
(D) 1

38*. Suppose the quadratic polynomial $\mathrm{P}(\mathrm{x})=\mathrm{ax}+\mathrm{bx}+\mathrm{c}$ has positive coefficients $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in arithmetic progression in that order. If $P(x)=0$ has integer roots α and β then $\alpha+\beta+\alpha \beta$ equals
(A) 3
(B) 5
(C) 7
(D) 14
39. The number of ordered pairs (x, y) of real numbers that satisfy the simultaneous equations $x+y^{2}=x^{2}+y=12$ is
(A) 0
(B) 1
(C) 2
(D) 4
40. Consider the quadratic equation $a(x-1)^{2}+x-3=0$. If a is of the form $\frac{k(k+1)}{2}, k \in Q$, then roots of equation are necessarily-
(A) integers
(B) imaginary
(C) rational numbers
(D) can not be predicted
41. Set of all real values of ' a ' such that $f(x)=\frac{(2 a-1) x^{2}+2(a+1) x+(2 a-1)}{x^{2}-2 x+40}$ is always negative is
(A) $(-\infty, 0)$
(B) $(0, \infty)$
(C) $(-\infty, 1 / 2)$
(D) None of these
42. Set of all values of x satisfying the inequality $\sqrt{x^{2}-7 x+6}>x+2$ is -
(A) $\mathrm{x} \in\left(-\infty, \frac{2}{11}\right)$
(B) $\mathrm{x} \in\left(\frac{2}{11}, \infty\right)$
(C) $x \in(-\infty, 1] \cup[6, \infty)$
(D) $\mathrm{x} \in[6, \infty)$
43. Suppose that the roots of $x^{3}+3 x^{2}+4 x-11=0$ are a, b and c, and the roots of $x^{3}+r x^{2}+s x+t=0$ are $\mathrm{a}+\mathrm{b}, \mathrm{b}+\mathrm{c}$ and $\mathrm{c}+\mathrm{a}$. Find t
(A) 23
(B) 24
(C) 25
(D) 26

MULTIPLE OPTIONS CORRECT

1. The integer value of k for which $(k-2) x^{2}+8 x+k+4>0 \forall x \in R$ is
(A) 5
(B) 6
(C) 7
(D) 4
2. Find the value of k for which the graph of the quadratic polynomial $P(x)=x^{2}+(2 x+3) k+4(x+2)+3 k-5$ intersects the axis of x at two distinct points.
(A) 1
(B) 2
(C) 5
(D) 4
3. Select the correct statement(s) for solution set of x
(A) $|2 x-1|>-1 \rightarrow x \in R$
(B) $\frac{1}{x-1}<x \rightarrow x(x-1)>1 \forall x>1$
(C) $\frac{|x|-1}{x(x-2)}<0 \equiv \frac{(x+1)(x-1)}{x(x-2)}<0$
(D) $|x-1|(x-2)^{2} \leq 0 \rightarrow x \in \phi$
4. Select the correct statement(s) for real numbers a, b, c and d.
(A) If $a b=0$ and $a=0$ then $b \in R$
(B) if $a b=a c$ then $\nexists b=\not \subset c \rightarrow b=c \forall a \in R$
(C) $\frac{a^{2} b}{c} \geq 0 \rightarrow \frac{b}{c} \geq 0 \& a \in R$
(D) $\frac{\mathrm{a}}{\mathrm{b}} \geq \frac{\mathrm{c}}{\mathrm{d}} \rightarrow \mathrm{ad} \geq \mathrm{bc} \forall \mathrm{b}, \mathrm{d} \in \mathrm{R}^{+}$
5. If $a x^{2}+b x+c=0$ and $c x^{2}+b x+a=0(a, b, c \in R)$ have a common non - real roots then
(A) $-2 \mid$ a $\mid<$ b $<2|a|$
(B) $-2|c|<\mid$ b| $<2|c|$
(C) $a= \pm c$
(D) $a=c$
6. Consider the equation $x^{2}+x-a=0, a \in N$. If equation has real roots then
(A) $\mathrm{a}=2$
(B) $a=6$
(C) $a=12$
(D) $a=20$

INTEGER TYPE

1. The number of irrational solutions of the equation $\sqrt{x^{2}+\sqrt{x^{2}+11}}+\sqrt{x^{2}-\sqrt{x^{2}+11}}=4$ is \qquad
2. Number of real values of x satisfying the equation $\sqrt{x^{2}-6 x+9}+\sqrt{x^{2}-6 x+6}=1$ is \qquad
3. Find the number of integral values of a for which the system of equations

$$
\left.\begin{array}{c}
x+a y=3 \\
a x+4 y=6
\end{array}\right\} \text { satisfy } x>1 ; y>0
$$

4. Minimum value of $f(x)=|x-1|+|2 x-1|+|3 x-1|+|4 x-1|$ is p / q where p / q is in lowest form and $p, q \in I^{+}$then $p+q$ is \qquad
5. When the polynomial $5 x^{3}+M x+N$ is divided by $x^{2}+x+1$, the remainder is 0 .

Then the value of $|M+N|$ is \qquad
6. If $a-2 b=1$ then value of $a^{3}-6 a b-8 b^{3}$ is equal to \qquad -
7. The value of $\sqrt{1+5 \sqrt{1+\ldots \ldots . .+2013 \sqrt{1+2014 \sqrt{1+2015 \sqrt{1+2016 \times 2018}}}} \text { is }}$ \qquad
8. Let $\mathrm{r}, \mathrm{s}, \mathrm{t}$ are roots of equation $8 \mathrm{x}^{3}+1001 \mathrm{x}+2008=0$. Then value of $(\mathrm{r}+\mathrm{s})^{3}+(\mathrm{s}+\mathrm{t})^{3}+(\mathrm{t}+\mathrm{r})^{3}$ is 7 k 3 (where k is at ten's place). Then value of k is \qquad
9. If both roots of equation $4 x^{2}-20 p x+25 p^{2}+15 p-66=0$ are greater than 2 , then sum of all possible integral values of p is \qquad
10. Let k be an integer and p is a prime number such that the quadratic equation $x^{2}+k x+p=0$ has two distinct positive integer solutions. Then the value of $-(p+k)$ is.
11. If the first three consecutive terms of a GP are the real roots of the equation $2 x^{3}-19 x^{2}+57 x-54=0$ and k is the sum of infinite number of the terms of this G.P. Then $2 k / 9$ equals
12. Let $(x+3)^{2}(x+4)^{3}(x+5)^{4}=(x+1)^{9}+a_{1}(x+1)^{8}+a_{2}(x+1)^{7}+\ldots \ldots+a_{9}$ then $a_{2}-365$ is equal to \qquad

SUBJECTIVE PROBLEMS

1. Obtain a polynomial of lowest degree with integral coefficients, whose one of the zero is $\sqrt{5}+\sqrt{2}$.
2. Let $P(x)$ be a polynomial such that $x \cdot P(x-1)=(x-4) \cdot P(x) \forall x \in R$. Find all such polynomials
3. Let $P(x)$ be a monic cubic equation such that $P(1)=1, P(2)=2, P(3)=3$ then find $P(4)$.
4. Show that $f(x)=x^{1000}-x^{500}+x^{100}+x+1$ has no rational roots.

MATRIX MATCH

1. Match the following

	COULUMN - I		COULUMN - II
A	If a, b, c and d are four non-zero real number such that $(d+a-b)^{2}+(d+b-c)^{2}=0$ and the roots of the equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ are real and equal then	P	$a+b+c=0$
B	If the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c)+\left(b^{2}+c^{2}\right)=0$ are real and equal, then	Q	a, b, c are in A.P.

C	If the equation $a x^{2}+b x+c=0$ and $x^{3}-3 x^{2}+3 x-1=0$ have a common real root, then	R	a, b, c, are in G.P.
D	Let a, b, c be positive real numbers such that the expression $b x^{2}+\left(\sqrt{(a+c)^{2}+4 b^{2}}\right) x+(a+c)$ is non- negative $\forall x \in R$, then	S	a, b, c are in H.P.

COMPREHENSION for Q1-3

The first four terms of a sequence are given by $\mathrm{T}_{1}=0, \mathrm{~T}_{2}=1, \mathrm{~T}_{3}=1, \mathrm{~T}_{4}=2$. The general term is given by $T_{n}=A a^{n-1}+B \beta^{n-1}$ where A, B, a, β are independent of n and A is positive.

1. The value of $\left(\alpha^{2}+\beta^{2}+\alpha \beta\right)$ is equal to
(A) 1
(B) 2
(C) 5
(D) 4
2. The value of $5\left(A^{2}+B^{2}\right)$ is equal to
(A) 2
(B) 4
(C) 6
(D) 8
3. The quadratic equation whose roots are α and β is given by
(A) $x^{2}-2 x-1=0$
(B) $x^{2}-2 x-2=0$
(C) $x^{2}-x-1=0$
(D) None

THANKS

Visit: www.mathsarc.com

SINGLE OPTION CORRECT

1. D
2. B
3. B
4. D
5. B
6.
7. D
8. B
9. D
10. A
11. A
12. B
13.
14.
15. C
16. B
17. A, Hint: $P(x)=(x-1)(x-2)(x-3)+x^{2}+2 x$
18. A
19. C
20. B
21. C
22. C Hint: $f(x)=2+\frac{3}{\left(x^{2}-4\right)^{2}+(x-2)^{2}+3}$
23. A
24. C
25. C, Hint: AM of roots $=\mathrm{HM} \rightarrow \alpha=\beta=\gamma=\delta=2$. $\mathrm{P}=-8$ and $\mathrm{q}=24$
26. C
27. A
28. C
29. A
30. C
31. B
32. D, Hint: $(x-1)(x-2)\left(x^{3}-3 x+1\right)=0$
33. C
34. A
35. B
36. A
37. D
38. B
39. C
40. D
41. B
42. C
43. C
44. C
45. D
46. C
47. A
48. A
49. A

MULTI OPTIONS CORRECT

1.
2.
3. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
4. $\mathrm{A}, \mathrm{C}, \mathrm{D}$
5. $\mathrm{A}, \mathrm{B}, \mathrm{D}$
6. A, B, C, D

INTEGER TYPE

1.
2.
3.
4. 7
5. 5
6. 1
7. 6
8. 5
9. 7
10. 1
11. 3
12. 371

Hint: $x+1=y \rightarrow(y+2)^{2}(y+3)^{3}(y+4)^{4}=y^{9}+a_{1} y^{8}+a_{2} y^{7}+\ldots \ldots+a_{9}$
$\mathrm{a}_{2}=$ sum of roots taking two at a time.
SUBJECTIVE

1. $P(x)=a\left(x^{4}-14 x^{2}+9\right)$, where $a \in I, a \neq 0$.
2. $P(x)=c x(x-1)(x-2)(x-3), c \neq 0$
3. 10

MATRIX MATCH

1. $\mathrm{A} \rightarrow \mathrm{R}, \mathrm{B} \rightarrow \mathrm{R}, \mathrm{C} \rightarrow \mathrm{P}, \mathrm{D} \rightarrow \mathrm{Q}$

COMPREHENSION for Q1-3

1. B
2. A
3. C
